ЛІЧИЛЬНИКИ ЕЛЕКТРИЧНОЇ ЕНЕРГІЇ
НИК 2100 АР2…
НАСТАНОВА З ЕКСПЛЮАТАЦІЇ
ААШХ.411152.025 НЕ

Вишгород – 2017
Зміст

Вступ .. 3
1 Опис лічильників і принцип їх роботи .. 4
1.1 Призначення лічильників .. 4
1.2 Технічні характеристики .. 5
1.3 Комплектність лічильників .. 8
1.4 Принцип роботи ... 9
1.5 Загальний вигляд лічильників ... 11
1.6 Параметризація лічильників ... 13
1.7 Тарифний модуль .. 14
1.8 Захист лічильників від несанкціонованого втручання ... 15
1.9 Маркування .. 15
1.10 Пакування ... 17
2 Використання за призначенням ... 18
2.1 Експлуатаційні обмеження .. 18
2.2 Підготовка лічильника до використання та порядок встановлення 18
2.3 Використання лічильника .. 20
2.4 Зчитування даних .. 20
3 Технічне обслуговування ... 24
3.1 Загальні вказівки ... 24
4 Зберігання .. 25
5 Транспортування ... 26
5.1 Вимоги до транспортування, за яких воно здійснюється .. 26
6 Гарантії виробника .. 27
Додаток А. Габаритні та установочні розміри лічильників .. 28
Додаток Б. Схеми підключення лічильників ... 29
Додаток В. Таблиця помилок лічильників ... 30
Додаток Г. Ідентифікаційні коди OBIS .. 31

Таблиця помилок лічильників ... 34

Підготовка лічильника до використання та порядок встановлення .. 35

Опис лічильників і принцип їх роботи .. 4

Технічні характеристики .. 5

Лічильники електричної енергії NIK 2100 AP2...
Настанова з експлуатації

ААШХ.411152.025 НЕ

Лічильники електричної енергії NIK 2100 AP2...

ТОВ «НІК-ЕЛЕКТРОНІКА»

Формат А4
Вступ

Ця настанова з експлуатації (надалі - НЕ) поширюється на лічильники електричної енергії NIK 2100 AP2… (далі - лічильники).

В НЕ розглядається робота лічильників, використання за призначенням, технічне обслуговування, повірка, зберігання і транспортування.

Особи обслуговуючого персоналу повинні бути спеціально навчени і мати не нижче III групи з електричної безпеки при роботі на установках до 1000 В.
1 Опис лічильників і принцип їх роботи

1.1 Призначення лічильників

1.1.1 Лічильники електричної енергії NIK 2100 AP2… призначені для вимірювання електричної активної енергії, в однофазних колах змінного струму, а також для організації одно та багатотарифного обліку електроенергії в комунально-побутовій сфері та в інших галузях.

1.1.2 В багатотарифні модифікації лічильників можуть вимірювати миттєві значення активної потужності, та напруги.

1.1.3 Всі лічильники мають випробувальний імпульсний вихід. Всі модифікації багатотарифних лічильників мають оптопорт.

1.1.4 Лічильники, в залежності від виконання, мають реле відключення споживача.

1.1.5 Лічильники можуть використовуватися в автоматизованих системах контролю та обліку електроенергії (АСКОЕ).

1.1.6 Лічильники призначені для внутрішнього встановлення, в яких навколишнє середовище має бути невибухонебезпече, без струмопровідного пилу або агресивних газів і пари в концентраціях, що руйнують метали і ізоляцію - категорія розміщення 3 за ГОСТ 15150.

1.1.7 По стійкості до кліматичних впливів лічильники відносяться до групи 4 за ГОСТ 22261, та мають клас механічних умов М2 з розширеним діапазоном температури і вологості. По стійкості до механічних впливів лічильники відносяться до групи 2 за ГОСТ 22261.

1.1.8 Клас електромагнітних умов – E2.

1.1.9 Виконання лічильників відрізняються номінальною та максимальною силою струму, номінальною напругою, кількістю вимірювальних елементів в колі струму, наявністю додаткових інтерфейсів, наявністю релейного виходу і реле відключення споживача.

1.1.10 Позначення лічильників при їх замовленні, а також в документації іншої продукції, в якій вони можуть бути застосовані, складається з найменування лічильника, його типу, коду виконання лічильника згідно з таблицею 1.1 дійсної НЕ:

“Лічильник електричної енергії NIK 2100 AP2T.1002.C.11”.

ААШХ.411152.025 НЕ
<table>
<thead>
<tr>
<th>Таблиця 1.1 – Структура умовного позначення лічильників</th>
</tr>
</thead>
<tbody>
<tr>
<td>Номінальна напруга</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Можливість вимірювання енергії</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Наявність датчиків</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>М</td>
</tr>
<tr>
<td>С</td>
</tr>
<tr>
<td>МС</td>
</tr>
<tr>
<td>Наявність реле відключення споживача</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>Наявність другого інтерфейсу</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Наявність оптичного порту</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Можливість вимірювати енергію по декількох тарифах</td>
</tr>
<tr>
<td>Т</td>
</tr>
<tr>
<td>Тип вимірюваної енергії</td>
</tr>
<tr>
<td>А</td>
</tr>
</tbody>
</table>

Примітка – * виконання можливе лише для багатотарифних лічильників

В лічильниках NIK 2100…P2… використовуються шунти в якості датчиків струму.

1.2 Технічні характеристики

1.2.1 Лічильники відповідають вимогам ДСТУ EN 62053-21, ДСТУ EN 62052-11, ДСТУ EN 50470-1, ДСТУ EN 50470-3.

1.2.2 Габаритні та установчі розміри лічильників наведені в додатку А.

1.2.3 Схема підключення лічильників приведена в додатку Б.

1.2.4 Основні параметри лічильників:
– клас точності – 1 за ДСТУ EN 62053-21, ДСТУ EN 62052-11 і клас точності В за ДСТУ EN 50470-1 та ДСТУ EN 50470-3;
– номінальна сила струму – 5 А;
– максимальна сила струму – 60 А;
– номінальна напруга – 220 В, 230 В, 240 В (залежно від виконання);
– максимальна напруга – 253 В, 264,5 В, 276 В;
– мінімальна напруга – 143 В;
– стала лічильника – 6400 імп/(кВт•год);
– номінальна частота – 50 Гц;
– міжповірочний інтервал – 6 або 16 років (16 років за умови проходження випробувань згідно ДСТУ EN 62059-32-1).

1.2.5 Активна споживана потужність колом напрути лічильників при нормальній температурі, номінальній частоті і при номінальній напрузі не перевищує 1 Вт.

Повна споживана потужність колом напрути лічильників при нормальній температурі, номінальній частоті і при номінальній напрузі не перевищує 2 В•А. Повна потужність, споживаючись колом струму лічильників не перевищує 0,2 В•А при номінальному струмі, номінальній температурі і номінальній частоті.

1.2.6 Лічильники мають електронний дисплей, який відображає покази електричної енергії в кВт•год (шість десяткових розрядів до коми зліва і два десяткових розряди після коми справа).

1.2.7 Встановлений робочий діапазон температури від мінус 40 ºС до плюс 70 ºС.

1.2.8 Границьний робочий діапазон температури від мінус 40 ºС до плюс 70 ºС.

1.2.9 Значення відносної вологості при 30 ºС не більше 90 %.

1.2.10 Границе значення відносної вологості при 30 ºС не більше 95 %.

1.2.11 Атмосферний тиск від 70 кПа до 106,7 кПа.

1.2.12 Маса лічильників - не більше 1 кг.

1.2.13 Самохід лічильників. При відсутності сили струму в колі струму і значенні напруги рівному 1,15 номінального, на випробувальному виході не з'являється більше одного імпульсу.

1.2.14 Чутливість. Лічильники реєструють електричну енергію при номінальній напрузі та силі струму не менше 12,5 мА, при вимірюванні активної енергії з коефіцієнтом потужності рівним 1.

1.2.15 Границі похибки в діапазоні струму навантаження.

Якщо лічильник перебуває у нормальних умовах, згідно табл. 1.3, але змінюється сила струму та коефіцієнт потужності, то відносні похибки не перевищують граничних значень, нормованих у таблиці 1.2.
Таблиця 1.2 – Границі відносної похибки

<table>
<thead>
<tr>
<th>Значення сили струму</th>
<th>Коефіцієнт потужності, (\cos \varphi)</th>
<th>Границі основної відносної похибки, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,05 I_{ном} \leq I < 0,1 I_{ном})</td>
<td>плюс 1</td>
<td>± 1,5</td>
</tr>
<tr>
<td>(0,1 I_{ном} \leq I \leq I_{макс})</td>
<td>плюс 1</td>
<td>± 1,0</td>
</tr>
<tr>
<td>(0,1 I_{ном} \leq I < 0,2 I_{ном})</td>
<td>плюс 0,5 (при індуктивному навантаженні)</td>
<td>± 1,5</td>
</tr>
<tr>
<td></td>
<td>плюс 0,8 (при ємнісному навантаженні)</td>
<td></td>
</tr>
<tr>
<td>(0,2 I_{ном} \leq I \leq I_{макс})</td>
<td>плюс 0,5 (при індуктивному навантаженні)</td>
<td>± 1,0</td>
</tr>
<tr>
<td></td>
<td>плюс 0,8 (при ємнісному навантаженні)</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 1.3 – Нормальні умови

<table>
<thead>
<tr>
<th>Впливний чинник</th>
<th>Значення за нормальних умов</th>
<th>Допустимі відхили для лічильників</th>
</tr>
</thead>
<tbody>
<tr>
<td>Оточуюча температура</td>
<td>23 °C, якщо не зазначено інше</td>
<td>± 2 °C</td>
</tr>
<tr>
<td>Напруга</td>
<td>Нормальне значення напруги</td>
<td>± 1,0 %</td>
</tr>
<tr>
<td>Частота</td>
<td>Нормальне значення частоти</td>
<td>± 0,3 %</td>
</tr>
<tr>
<td>Форма кривої</td>
<td>Синусоїдні напруги та струми</td>
<td>Коефіцієнт нелінійних спотворень менший ніж: 2 %</td>
</tr>
<tr>
<td>Зовнішнє неперервне магнітне поле</td>
<td>Відсутні</td>
<td>–</td>
</tr>
<tr>
<td>Зовнішнє магнітне поле промислової частоти</td>
<td>Відсутні</td>
<td>Значення індукції, що спричиняє змінення похибки не більше ніж: 0,2 %</td>
</tr>
<tr>
<td>Радіочастотні електромагнітні поля від 30 кГц до 2 ГГц</td>
<td>Відсутні</td>
<td>< 1 В/м</td>
</tr>
<tr>
<td>Робота допоміжних пристроїв</td>
<td>Допоміжні пристрої вимкнені</td>
<td>–</td>
</tr>
<tr>
<td>Кондуктивні завади, індуковані радіочастотними полями, від 150 кГц до 80 МГц</td>
<td>Відсутні</td>
<td>< 1 В</td>
</tr>
</tbody>
</table>
1.2.16 Додаткова похибка лічильників, при наявності постійної складової в колі змінного струму, не перевищує ± 3 %.

1.2.17 Лічильники витримують короткочасні перевантаження струмом, що перевищує в 30 раз I_{max}, протягом одного напівперіоду номінальної частоти.

1.2.18 Лічильники стійкі до дії постійного магнітного поля, утвореного постійним магнітом з поперечним перерізом не менше 5,0 cm^2 індукцією не менше 300 mTl на полюсі.

1.2.19 Лічильники стійкі до впливу зовнішнього магнітного поля індукцією не менше 100 mTl, створеного струмом частоти однаковою з частотою мережі.

1.2.20 Лічильники несприйнятливі до електростатичних та іскрових розрядів.

1.2.21 Лічильники несприйнятливі до високочастотних електромагнітних полів.

1.2.22 Показники надійності. Лічильники мають середнє напрацювання на відмову, з урахуванням технічного обслуговування - не менше 200 000 год.

Середнє напрацювання на відмову встановлюється для умов 1.2.7 - 1.2.11.

1.2.23 Середній термін служби до першого капітального ремонту лічильників не менше 30 років.

1.2.24 Ступінь захисту оболонки лічильника від проникнення пилу та води - IP 54 (згідно ДСТУ EN 60529).

1.3 Комплектність лічильників

1.3.1 Лічильники мають пластmasовий корпус, який складається з цоколя та прозорого кожуха. В цоколь встановлюється друкована плата, а також клемна колодка з первинними перетворювачами струму. Клемна колодка закривається клемною кришкою. Цохок і кожух лічильників, з'єднуються пломбувальними гвинтами. Лічильники мають датчики розкриття кожуха і кришки затискачів.

1.3.2 Лічильники можуть мати один або два вимірювальні елементи в колі струму.

1.3.3 Лічильники можуть мати оптопорт.

1.3.4 Лічильники можуть мати реле відключення споживача.

1.3.7 Комплект поставки відповідає таблиці 1.4.
Таблиця 1.4

<table>
<thead>
<tr>
<th>Найменування</th>
<th>Кількість</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лічильники електричної енергії (виконання згідно замовленню)</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Паспорт *</td>
<td>1 екз.</td>
</tr>
<tr>
<td>Настанова з експлуатації *</td>
<td>1 екз.</td>
</tr>
<tr>
<td>Програмне забезпечення **</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Споживча тара</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Декларація про відповідність</td>
<td>1 екз.</td>
</tr>
</tbody>
</table>

* Можна скачати в електронному вигляді з сайту www.nik.net.ua. Інші варіанти поставки експлуатаційної документації відображаються в договорі на постачання.
** Згідно договору на постачання.

1.4 Принцип роботи

1.4.1 Вимірювання активної електричної енергії проводиться шляхом аналогово-цифрового перетворення електричних сигналів, що надходять від первинних перетворювачів сили струму і напруги на вхід вбудованого аналого-цифрового перетворювача (АЦП) мікроконтролера, який перетворює сигнали в послідовність цифрівих відліків, та передається іншому мікроконтролеру, який розраховує значення напруги, потужності та активної енергії сумарно і по кожному тарифу.

1.4.2 Мікроконтролер забезпечує роботу електронного дисплею, інтерфейсів зв'язку, імпульсного виходу, датчиків відкриття кожуха і клемної кришки лічильників. Для зберігання даних в лічильниках використовується енергонезалежна пам’ять. У пам’яті зберігаються накопичені значення електроенергії і параметри лічильника. Виміряні значення енергії та параметри лічильників, при відсутності напруги на затискачах напруги, зберігаються не менше 16 років.

1.4.3 У лічильниках використовується семисегментний електронний дисплей з додатковими символами. В залежності від виконання в лічильнику може бути встановлений один з електронних дисплеїв, зображених на рисунках 1.1, 1.2.
Рисунок 1.1. Вигляд електронного дисплею багатотарифних лічильників.

1 – індикатор внутрішньої помилки, блимає при виникненні помилки, або під час дії аварійного тарифу;

2 – якщо відображається символ «←» - реле замкнute, а якщо відображається символ «→» - реле розімкнute (відображається лише в лічильниках у виконанні з реле відключення споживача);

3 – відображається номер тарифу, що відповідає ресурсу енергії, значення якого відображається на екрані, і може приймати значення від 1 до 4;

4 – індикатор низького заряду батареї резервного живлення;

5 – значення параметра, що відображається;

6 – «V» – напруга в Вольтах, «kW» – активна потужність в кіловатах, «kW h» – активна енергія в кіловат-годинах;

7 – індикатор активного сеансу зв’язку з лічильником по одному з доступних інтерфейсів;

8 – номер тарифу, який діє на даний момент.

Рисунок 1.2. Вигляд електронного дисплею однотарифних лічильників

1 – індикатор внутрішньої помилки, блимає при виникненні помилки, або під час дії аварійного тарифу;

5 – значення параметра, що відображається;

6 – «kWh» – активна енергія в кіловат-годинах.
1.5 Загальний вигляд лічильників

1.5.1 Загальний вигляд лічильників зображений на рисунку 1.4. Ліворуч зображений однотарифний лічильник, а праворуч зображений багатотарифний лічильник.

Рис. 1.4. Загальний вигляд лічильників
1 – індикатор функціонування;
2 – кнопка «Перегляд»;
3 – електронний дисплей;
4 – пломбувальні гвинти;
5 – кришка оптопорту і відсіку батареї;
6 – клемна кришка;
7 – тип та виконання лічильника;
8 – клас точності лічильника;
9 – місце для нанесення знаку оцінки відповідності та додаткового метрологічного маркування;
10 – технічні характеристики лічильника;
11 – робоча температура лічильника;
12 – літієва батарея;
13 – роз’єм для підключення літієвої батареї;
14 – оптопорт;
15 – датчик відкриття клемної кришки;
16 – датчик відкриття кожуху;
17 – роз’єм імпульсного виходу;
18 – клемна колодка.

1.5.2 На лицьовій панелі лічильників розташована кнопка "Перегляд" (рисунок 1.4), призначена для перемикання меню на електронному дисплеї.

1.5.3 Лічильники в залежності від виконання мають годинник реального часу та кален-дар. Годинник реального часу використовується для багатотарифного обліку електричної ене-ргії, визначення середньої потужності за період інтегрування та реєстрації подій з міткою ча-су. Годинник реального часу може переходити на зимовий та літній час в автоматичному ре-жимі або по даті, яка встановлюється при параметризації.

Для зменшення залежності похибки годин від навколишньої температури, в лічильники вмонтовано температурний датчик. Лічильники при відключенні напруги мережі для забезпе-чення безперервності роботи вбудованого годинника мають літієву батарею живлення (номер 12 на рисунку 1.4). За відсутності напруги мережі, мікроконтролер лічильників перемикається на економічний батарейний режим. У цьому режимі працює тільки внутрішній годинник лічи-льників. При включені напруги мережі, енергія літієвої батареї не використовується. В екст-ремальних умовах, без напруги мережі, лічильник може працювати не менше 10 років.

1.5.4 Лічильники в залежності від виконання при натиснанні кнопки «Перегляд», вми-каються на деякий час в режимі індикації. Тривалість роботи лічильників в режимі індикації і список виведених вікон залежить від параметризації лічильників.

Примітка – У режимі індикації додаткові інтерфейси зв’язку зв’язку, не працюють.

1.5.5 В лічильниках виконань з реле відключення споживача, через оптопорт, є можли-вість відключати або підключати навантаження споживача. В залежності від параметризації, реле також може відключатися автоматично при перевищенні максимально допустимих значень напруги, потужності, та після спрацювання датчиків магнітного або електромагнітного полів.
1.6 Параметризація лічильників

Параметризація здійснюється лише в багатотарифних лічильниках. Під час параметризації в енергонезалежну пам’ять вводяться константи конфігурації лічильників. Параметризація лічильників умовно ділиться на 2 типи:
– заводська параметризація;
– параметризація у споживача.

При заводській параметризації в пам'ять лічильників записуються серійний номер і константи, які необхідні для функціонування лічильників і оптопорту, які не змінюються за весь час експлуатації лічильників. Заводська параметризація лічильників можлива тільки в заводських умовах.

При параметризації у споживача, в пам'ять лічильників через оптопорт записуються константи, які адаптують лічильник до умов експлуатації. Інформація, яка записується в пам'ять лічильників, приведена в таблиці 1.5. Параметризацію лічильників у споживача проводить енергопостачальна або вповноважена організація за допомогою спеціального програмного за-береження. Параметризація можлива тільки по паролю.

Таблиця 1.5

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Значення за замовчуванням</th>
<th>Допустимі значення</th>
</tr>
</thead>
<tbody>
<tr>
<td>Швидкість передачі даних:</td>
<td>9600 бод</td>
<td>не змінювати</td>
</tr>
<tr>
<td>- для оптичного порту</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Час до роз’єднання при неактивності інтерфейсу</td>
<td>120 с</td>
<td>від 30 до 250 с</td>
</tr>
<tr>
<td>Пароль користувача</td>
<td>111111111111111</td>
<td>від 0 до 16 символів</td>
</tr>
<tr>
<td>Пароль оператора</td>
<td>2222222222222222</td>
<td>від 0 до 16 символів</td>
</tr>
<tr>
<td>Місце установки лічильника (1 поле)</td>
<td>-</td>
<td>від 0 до 100 символів</td>
</tr>
<tr>
<td>Місце установки лічильника (2 поле)</td>
<td>-</td>
<td>від 0 до 100 символів</td>
</tr>
<tr>
<td>Місце установки лічильника (3 поле)</td>
<td>-</td>
<td>від 0 до 100 символів</td>
</tr>
<tr>
<td>Місце установки лічильника (4 поле)</td>
<td>-</td>
<td>від 0 до 100 символів</td>
</tr>
<tr>
<td>Параметри переходу на літній / зимовий час</td>
<td>Автоматичний перехід; перехід у вказаний місяць, день; не переходяти.</td>
<td></td>
</tr>
</tbody>
</table>

ААШХ.411152.025 НЕ
Продовження таблиці 1.5

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Значення за замовчуванням</th>
<th>Допустимі значення</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кількість тарифів</td>
<td>За вимогою замовника</td>
<td>від 1 до 4</td>
</tr>
<tr>
<td>Кількість профілів тижня</td>
<td></td>
<td>від 1 до 10</td>
</tr>
<tr>
<td>Кількість тарифних сезонів</td>
<td></td>
<td>від 1 до 12</td>
</tr>
<tr>
<td>Кількість профілів дня</td>
<td></td>
<td>від 1 до 16</td>
</tr>
<tr>
<td>Дні свят</td>
<td></td>
<td>від 0 до 30</td>
</tr>
</tbody>
</table>

1.7 Тарифний модуль

1.7.1 Програмований тарифний модуль лічильників розподіляє дані вимірюваних лічильниками енергії в регістрі активної енергії, відповідні до тарифної моделі лічильників (одно - або багатотифний облік). При параметризації в лічильники вводяться тарифні сезони, відповідні їм профілі тижня і профілі дня в яких задано час перемикання тарифів.

1.7.2 Програма тарифів аналізує дані внутрішнього годинника реального часу, і порівнює їх із заданими при параметризації лічильника даними про початок тарифних сезонів.

1.7.3 Наявність тарифних сезонів дозволяє протягом календарного року використовувати декілька варіантів регістрів накопичення енергії по тарифам. В лічильнику можна використовувати до 12 тарифних сезонів. Початку тарифного сезону відповідає даті активації сезону. Номер профілю тижня, буде використовуватися протягом цього сезону.

1.7.4 Профіль тижня призначає певний порядок профілів доби протягом календарного тижня, включаючи додатковий святковий день. Лічильник підтримує до 10 профілів тижня.

1.7.5 Профіль доби являє собою порядок перемикання активного тарифу протягом доби з відповідним йому часом перемикання. Лічильник підтримує до 16 профілів діб з можливістю використання до 12 перемикань активного тарифу на протязі доби.

1.7.6 Перелік святкових днів. Лічильнику можна вказати до 30 дат святкових днів. Формат дати свята: місяць - день.

1.7.7 Регістри тарифів. Накопичені значення енергії записуються у відповідні регістри в пам'яті лічильника. Для кожного тарифу лічильник має окремий комплект регістрів енергій.
1.7.8 Аварійний тариф. У разі збою внутрішнього годинника, в лічильниках автоматично включається аварійний тариф, і всі обчислені значення енергії записуються в регістр аварійного тарифу, при цьому на електронному дисплеї блимають сегменти 1 та 8 на рисунку 1.1. Номер аварійного тарифу задається при параметризації.

1.8 Защит лічильників від несанкціонованого втручання

1.8.1 Кожух і клемна кришка лічильників кріпляться до цоколя пломбувальними гвинтами. Паз по периметру цоколя забезпечує перекриття при з'єднанні не менше 4 мм, що виключає несанкціоноване проникнення до вимірювальної частини лічильників без пошкодження корпусу. Додатково до пломбувальних гвинтів для кріплення кожуха до цоколю може бути використане лазерне заварювання.

1.8.2 Лічильники в залежності від виконання, мають датчик розкриття клемної колодки і датчик розкриття кожуха лічильника. Лічильники забезпечують фіксацію 65635 спрацьовань кожного датчика і можуть фіксувати 20 останніх дат їх спрацьовування (розкриття і закриття) в журнал подій лічильника.

1.8.3 В лічильниках, залежно від виконання, інформація доступна для читання по оптопорту. Доступ до даних можливий тільки після введення паролю.

1.8.4 Для ідентифікації показань лічильників електричної енергії в протоколі передачі даних IEC 62056-21 використовуються Коди OBIS – див. «Додаток Г. Ідентифікаційні коди OBIS»1.

1.8.5 Пароль користувача дозволяє тільки читати дані з лічильників. Запис даних в лічильник по паролю користувача неможливий.

1.8.6 Пароль оператора дозволяє записувати і читати дані.

1.9 Маркування

1.9.1 Маркування лічильників відповідає ДСТУ EN 62053-21, ДСТУ EN 62052-11, ДСТУ EN 50470-1 та ДСТУ EN 50470-3 і кресленням підприємства-виробника.

1.9.2 На лицьову панель лічильника нанесені офсетним друком або іншим способом, який не погіршує якості:

- значок та номер органу, що видав сертифікат відповідності;
- умовне позначення лічильника згідно таблиці 1.1 даної настанови з експлуатації;
- клас точності лічильника та відповідний йому стандарт;
- номінальна та максимальна сила струму;
- позначення індикатора функціонування «6400 imp/kW·h»;
– товарний знак підприємства – виготовника;
– рік виготовлення лічильника;
– знак подвійного квадрату «☐» (корпус лічильника класу захисту ІІ);
– інші написи на вимогу замовника, зокрема, логотип і штрих-код).

1.9.3 На клемній кришці лічильника нанесена схема підключення лічильника. Схеми підключення лічильників наведені в додатку Б. При підключенні лічильника до джерела струму алюмінієвим дротом, вказані дроти гільзуються. Згідно ГОСТ 9.005-72 “Єдина система захисту від корозії”.

1.9.4 Шрифти та знаки, що використовуються для маркування, відповідають ГОСТ 26.020 та кресленнями підприємства-виробника.

1.9.5 Якість виконання написів і позначень забезпечує їх чітке зображення протягом строку служби лічильника.

1.9.6 Маркування споживчої тари відповідає кресленням підприємства-виробника і містить такі відомості:
– товарний знак підприємства-виробника;
– найменування та умовне позначення лічильника;
– рік упаковування;
– штамп ВТК.

1.9.7 Маркування наноситься на етикетку, прикріплену до споживчої тари, або на саму тару.

1.9.8 Маркування транспортної тари відповідає ГОСТ 14192, вимогам договору та кресленнями підприємства-виробника.

На транспортній тарі є ярлик, виконаний друкарським способом з маніпуляційними знаками "Крихке. Обережно", "Берегти від вологи", "Верх," і ярлик з основними, додатковими та інформаційними написами згідно ГОСТ 14192.

1.9.9 Ярлики на транспортній тарі розташовані згідно ГОСТ 14192.

1.9.10 Маркування виконується українською мовою або мовою зазначеною в договорі на поставку.

Можливий інший варіант маркування тари на вимогу замовника із зазначенням в договорі на поставку.

1 В лічильниках, які вимірюють енергію в одному напрямку, на електронний дисплей ОБІС коди не виводяться.

ААШХ.411152.025 НЕ
1.10 Пакування

1.10.1 Пакування лічильників, експлуатаційної та товаросповідної документації проводять відповідно до креслень підприємства-виробника. Вид відправок - малотонажний.

1.10.2 Споживча тара для лічильників виготовляється з картону по кресленнях заводавробника.

1.10.3 У споживчу тару вкладається один лічильник з експлуатаційною документацією, згідно з комплектом поставки та декларацією про відповідність.

1.10.4 Споживча тара з упакованим лічильником обклеєна клейкою стрічкою. На верхню частину споживчої тари наклеєний пакувальний лист.

1.10.5 Інший варіант упаковки лічильника проводять на вимогу замовника із зазначенням в договорі на поставку.

1.10.6 Упаковані в споживчу тару лічильники укладають в транспортну тару. Згідно з кресленнями підприємства-виробника в транспортну тару вкладається не більше 20 лічильників.

1.10.7 В ящик вкладена також товаросповідна документація, в тому числі пакувальний лист, що містить такі відомості:

- найменування та умовне позначення лічильника;
- кількість лічильників;
- дату упаковки;
- штамп ВТК.

1.10.8 Габаритні розміри транспортної тари не перевищують 450 мм x 610 мм x 960 мм. Маса нетто, не більше 24 кг.
Маса брутто, не більше 48 кг.
2 Використання за призначенням

2.1 Експлуатаційні обмеження

2.1.1 Експлуатаційні обмеження описані в таблиці 2.1.

Таблиця 2.1

<table>
<thead>
<tr>
<th>Найменування параметра</th>
<th>Значення</th>
</tr>
</thead>
<tbody>
<tr>
<td>Діапазон вхідних напруг, В</td>
<td>від 143 до 300</td>
</tr>
<tr>
<td>Робочий діапазон сил струмів, A</td>
<td>від 0,0125 до 60</td>
</tr>
<tr>
<td>Максимально допустима напруга на клемах випробувального виходу в розімкнутому стані, В</td>
<td>30</td>
</tr>
<tr>
<td>Максимально допустима сила струму вихідного кола випробувального виходу в замкнутому стані, мА</td>
<td>30</td>
</tr>
<tr>
<td>Діапазон робочої температури, °C</td>
<td>від мінус 40 до плюс 70</td>
</tr>
<tr>
<td>Гранічний діапазон робочої температури, °C</td>
<td>від мінус 45 до плюс 70</td>
</tr>
<tr>
<td>Діапазон змін відносної вологості (при температурі плюс 30 °C), %</td>
<td>від 0 до 95</td>
</tr>
<tr>
<td>Діапазон змін атмосферного тиску, кПа</td>
<td>від 70 до 106,7</td>
</tr>
</tbody>
</table>

Примітка: При температурі нижче мінус 25 °C на електронному дисплей лічильника відбувається зміна інформації з інтервалом 1 хвилина.

2.2 Підготовка лічильника до використання та порядок встановлення

2.2.1 Монтаж, демонтаж, розкриття і таврування лічильника здійснюють лише спеціально уповноважені організації та особи, згідно з діючими правилами з монтажу електроустановок.

2.2.2 Для живлення годинника лічильника, в залежності від виконання, використовується літієва батарейка. Замінювати літієву батарейку має право тільки енергостачальна або уповноважена організація.

УВАГА! Для забезпечення безпеки при заміні літієвої батарейки живлення, необхідно відключити лічильник від електричної мережі.

Заміна літієвої батарейки живлення проводиться в такій послідовності:

- за допомогою кусачок відкручте пломбувальну нитку (в випадку якщо оптопорт запломбований);
- відкрийте кришку оптопорту 5 (рис. 1.4).
– від’єднайте роз’єм батарейки від плати лічильника;
– витягніть розряджену літієву батарейку живлення, і дотримуючись полярності встановіть нову;
– якщо після заміни літієвої батарейки живлення на електронному дисплеї більше ніж 20 секунд продовжує блимати символ 4 на рисунку 1.1 – це означає що була встановлена розряджена батарейка або не була дотримана полярність батарейки при установці;
– встановіть в лічильнику поточну дату і час через оптопорт;
– встановіть в лічильнику кришку оптопорту, і навісіть пломбу.

2.2.3 Лічильник слід встановлювати в приміщеннях з умовами згідно 1.2.7-1.2.11.

2.2.4 Перед встановленням лічильника необхідно знести струмінну електричну мережу. Потім витягніть лічильник з упаковки і переконайтеся в відсутності механічних ушкоджень, цілісності пломб.

2.2.5 Закріпіть лічильник в точці обліку за допомогою трьох гвинтів, або встановіть його на DIN-рейці. Габаритні та установчі розміри лічильника наведені на малюнку А.1 в додатку А.

2.2.6 Підключення лічильника здійснюйте відповідно до схеми зображеної на кришці затискної плати та в додатку Б. Затяжку всіх гвинтів здійсніть викруткою (товщина леза 1мм) до упору з моментом сили не менш 3 Н•м.

При підключенні лічильника до джерела струму алюмінієвим дротом, вказані дроти гільзуються. Згідно ГОСТ 9.005-72 "Єдина система захисту від корозії".

2.2.7 Подайте на лічильник напругу і переконайтеся що індикація на електронному дисплеї вказує на штатну роботу лічильника описану в 2.2.8, в іншому випадку відключіть лічильник.

2.2.8 Індикація режимів роботи лічильників.

2.2.8.1 Для відображення режимів роботи в лічильнику встановлено оптичний індикатор функціонування «6400 imp/kW•h», який мигає з частотою, пропорційною споживанній потужності і переключається синхронно з випробувальним електричним виходом, а також на електронному дисплеї виводяться додаткові символи, описані в 1.4.3.

2.2.8.2 В випадку збоїв лічильників, на електронному дисплеї поченає блимати сегмент 1, та періодично відображаються коди помилок на сегментах 5 рис.1.1 - рис. 1.2. В багатотарифних виконаннях лічильників, при натисканні кнопки «Перегляд» спочатку перелистуються всі помилки, які виникли в лічильнику, а потім дані обчислені і вимірени лічильником. Перелік помилок наведений в додатку В даної НЕ.
2.2.8.3 Аварійний тариф вмикається у випадках збою тарифної системи, або внутрішнього годинника лічильника.

2.2.8.4 Дія аварійного тарифу відображається на електронному дисплеї символом 1, та блиманням номеру аварійного тарифу 8 на рис. 1.1, при цьому при натисканні кнопки «Перегляд», або при автоматичному перемиканні вікон періодично з'являється вікно «Err 006».

2.2.8.5 Номер діючого тарифу відображається одним із символів 8, а номер тарифу що переглядається — символами 3 (рис. 1.1). При натисканні кнопки «Перегляд» або при автоматичному перемиканні вікон періодично з'являється вікно «Err 006».

2.2.9 Після подачі напруги на затискач лічильника переконайтеся в нормальній роботі індикаторів, закріпіть кришку затискачів за допомогою гвинта, пропустіть нитку через спеціальний прилив в кришці і отвір в голівці гвинта та навітьте пломбу.

2.3 Використання лічильника

2.3.1 У робочому режимі лічильник вимірює активну електричну енергію з наростаючим підсумком.

2.3.2 Споживання енергії навантаженням відображається за допомогою оптичного індикатора функціонування «6400 imp/kW•h» на лицевій панелі лічильника.

2.3.3 Випробувальний вихід реалізований на електронному ключі з оптичною розв'язкою. Максимально допустима напруга ключа в розімкнутому стані 30 В, максимально допустимий струм ключа в замкнутому стані 30 мА.

2.4 Зчитування даних

2.4.1 Виміряні значення, що зберігаються в пам'яті лічильника, або обчислені по результатам вимірювань бути зчитані через оптопорт.

2.4.2 В лічильниках після подачі живлення в залежності від параметрації, в послідовному порядку формуються дані, наведені в таблиці 2.2 у вигляді «вікон». У перший момент після включення лічильника засвічується всі сегменти РКІ. Тривалість індикації кожного вікую даних 10 секунд. Тип даних у вікні задається при параметрації лічильників.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Тип даних</th>
<th>Вікна, які виводяться на електронному дисплеї зображеному на рис. 1.1</th>
<th>Вікна, які виводяться на електронному дисплеї зображеному на рис. 1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Засвітка всіх сегментів електронного дисплея</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ААШХ.411152.025 НЕ
<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Тип даних</th>
<th>Вікна, які виводяться на електронному дисплеї зображеному на рис.1.1</th>
<th>Вікна, які виводяться на електронному дисплеї зображеному на рис.1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Значення активної енергії, сумарне по всіх тарифах, в кіловат-годинах</td>
<td>[число] kwh</td>
<td>[число] Wh</td>
</tr>
<tr>
<td>3</td>
<td>Значення активної енергії по першому тарифу, в кіловат-годинах</td>
<td>[число] kwh</td>
<td>--</td>
</tr>
</tbody>
</table>

Продовження таблиці 2.2

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Тип даних</th>
<th>Вікна, які виводяться на електронному дисплеї зображеному на рис.1.1</th>
<th>Вікна, які виводяться на електронному дисплеї зображеному на рис.1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Значення активної енергії по другому тарифу, в кіловат-годинах</td>
<td>[число] kwh</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>Значення активної енергії по третьому тарифу, в кіловат-годинах</td>
<td>[число] kwh</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>Значення активної енергії по четвертому тарифу, в кіловат-годинах</td>
<td>[число] kwh</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>Миттєве значення потужності, кВт</td>
<td>[число] kW</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>Миттєве значення напруги, В</td>
<td>[число] В</td>
<td>--</td>
</tr>
<tr>
<td>9</td>
<td>Миттєве значення сили струму, А</td>
<td>[число] A</td>
<td>--</td>
</tr>
<tr>
<td>10</td>
<td>Рухомий рядок, який несе інформацію про заборгованість споживача, в якій зазначена сума в грн, і дата в форматі число - місяць - рік</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Серійний номер лічильника</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

В однотарифному лічильнику, у перший момент після включення засвічуються всі сегменти електронного дисплею, а потім вузькі частини відображаються значення активної енергії. У випадку виникнення помилок в однотарифному лічильнику індикація здійснюється згідно 2.2.8.2 даної НЕ.

2.4.3 Функція ручного перегляду даних дає можливість за допомогою кнопки 2 на рисунку 1.4, ввести на електронний дисплей більшу частину збережених даних.

2.4.4 Для зчитування даних через додаткові інтерфейси зв’язку, потрібен відповідний перетворювач і програмне забезпечення. Для зчитування даних через інтерфейс оптичного зв’язку необхідна оптична головка розроблена згідно IEC 62056-21 та програмне забезпечення, яке можна скачати з офіційного сайту www://nik.net.ua.

З’єднавшись з лічильником, є можливість:
– вичитати або змінити тарифну модель лічильника;
– вичитати профіль навантаження, або показів лічильника для кожного виду вимірюваної енергії за останні 60 днів;
– вичитати значення кожного виду енергії вимірюваної лічильником по кожному тарифу, і сумарно за всіма тарифами за останній день або місяць;
– вичитати кількість подій, які відбувалися з лічильником;
– вичитати останні 20 дат спрацювання WDT;
– вичитати останні 20 дат ввімкнення лічильника;
– вичитати останні 20 дат вимкнення лічильника;
– вичитати останні 20 дат розкривання клемної кришки;
– вичитати останні 20 дат розкривання кожуху;
– вичитати останні 20 дат встановлення годинника;
– вичитати останні 20 дат початку дії радіодатчика;
– вичитати останні 20 дат кінця дії рідіодатчика;
– вичитати останні 20 дат скидання радіодатчика;
– вичитати останні 20 дат початку датчика магнітного поля;
– вичитати останні 20 дат кінця дії датчика магнітного поля;
– вичитати останні 20 дат скидання датчика магнітного поля;
– вичитати останні 15 дат фіксації завищення напруги мережі;
– вичитати останні 15 дат фіксації заниження напруги мережі;
– вичитати останні 15 дат зміни стану реле відключення споживача;
– вичитати останні 15 дат спрацювання індикатора низького заряду батареї;
– вичитати останні 15 дат спрацювання індикатора низького заряду батареї;
– вичитати останні 15 дат вводу неправильного паролю;
– проводити коригування годинника лічильника;
– вичитати значення всіх величин, вимірюваних лічильником;
– вичитати або змінити налаштування інтерфейсів, параметри порогів напруги або потужності, при яких відключається реле відключення споживача;
– вичитати інформацію про місце встановлення лічильника;
– змінити пароль доступу;
– змінити номер тарифу або часові інтервали, при дії яких спрацьовує релейний вихід;
– змінити кількість, і порядок виведення вікон на електронному дисплеї.

Примітка – Лічильники накопичують значення кожного виду енергії з точністю до третього знаку після коми, а на електронному дисплеї виводяться значення з точністю до другого знаку після коми (третій знак відкидається), тому:
– значення кожного виду сумарної енергії за всіма тарифами, яке виводиться на електронний дисплей лічильника $T_{Σед}$ може бути більше від значення сумарної енергії $T_{Σв}$ обчисленого за формулою (2.1) не більше ніж на 0,04 (2.2).

$$T_{Σв} = T_1 + T_2 + T_3 + T_4 \quad (2.1)$$

$$T_{Σед} - T_{Σв} \leq 0.04 \quad (2.2)$$

де T_1, T_2, T_3, T_4 – значення енергії виводяться на електронний дисплей лічильника по першому, другому, третьому і четвертому тарифах відповідно;

– значення кожного виду енергії за певний період W_p, може бути більше від суми значень енергій 30-ти хвилинних інтервалів $W_{Σ30}$ вичитаних з лічильника за допомогою програми параметризації за той самий період не більше ніж на 0,48 (2.3).

$$W_p - W_{Σ30} \leq 0.48 \quad (2.3)$$

2.4.5 Лічильники в залежності від виконання мають датчик магнітного поля, який спрацьовує при впливі магнітного поля більш 100 мТл на корпус лічильника протягом більше 3 с. Після впливу магніту на електронному дисплей періодично спалахує напис "магніт". Скинути повідомлення "магніт" можна за допомогою програми "НІК Параметризація" через будь-який доступний інтерфейс зв'язку за паролем.

2.4.6 Лічильники в залежності від виконання мають датчик електромагнітного поля, який спрацьовує при впливі електромагнітного поля напруженістю понад 10 В / м в діапазоні частот від 80 до 2000 МГц протягом більше 3 с.

В наслідок впливу електромагнітного поля на електронному дисплеї періодично з'являється напис "електромагніт". Скинути напис "електромагніт" можна за допомогою програми "НІК Параметризація" через будь-який доступний інтерфейс зв'язку за паролем.
3 Технічне обслуговування

3.1 Загальні вказівки

3.1.1 Технічне обслуговування лічильників при дотриманні умов експлуатації проводиться один раз в 16 років.

3.1.2 Технічне обслуговування полягає в проведенні ремонту, юстування та параметризації лічильника.

3.1.3 Операція поверки проводиться уповноваженим органом або уповноваженою лабораторією.

3.1.4 Операція ремонту, юстування та заводської параметризації лічильника проводиться на заводі виробника.

3.1.5 По безпеці експлуатації лічильник відповідає вимогам безпеки за ГОСТ 22261.

3.1.6 За способом захисту людини від ураження електричним струмом лічильники відповідають класу ІІ за ДСТУ EN 62053-21, ДСТУ EN 62052-11, ДСТУ EN 50470-1 та ДСТУ EN 50470-3.

3.1.7 Ізоляція між усіма колами струму, напруги і «землею» витримує протягом 1 хв випробувальну напругу 4 кВ (середньоквадратичне значення) частотою (50 ± 2,5) Гц.

3.1.8 Лічильник пожежобезпечний та відповідає вимогам до пожежної безпеки згідно ГОСТ 12.1.004-91.
4 Зберігання

4.1 Лічильник необхідно зберігати в складських приміщеннях споживача (постачальника) в споживчій тарі - згідно ГОСТ 22261-94.
5 Транспортування

5.1 Вимоги до транспортування, за яких воно здійснюється

5.1.1 Умови транспортування і зберігання лічильника в транспортній тарі підприємства-виробника відповідають умовам 3 за ГОСТ 15150.

Вид відправок – невеликий малотонажний.

5.1.2 Лічильник може транспортуватися в критих залізничних вагонах, перевозитись автомобільним транспортом із захистом від дощу і снігу, водним транспортом, а також транспортуватися в герметизованих опалювальних відсіках літаків.

5.1.3 Транспортування здійснюється відповідно до правил перевезень, що діють на кожен вид транспорту.

5.1.4 Лічильник в транспортній тарі є міцним до впливу температури навколишнього повітря від мінус 45 °С до плюс 70 °C, впливу відносної вологості навколишнього повітря 95 % при температурі 30 °C і атмосферного тиску від 70 до 106,7 kPa (від 537 до 800 мм рт. ст.).

5.1.5 Лічильник в транспортній тарі є міцним до впливу транспортної тряски при числі ударів від 80 до 120 в хвиліну з прискоренням 30 m /c².
6 Гарантії виробника

6.1 При поставці лічильників в межах України підприємство-виробник гарантує відповідність лічильників вимогам ДСТУ EN 62053-21, ДСТУ EN 62052-11, ДСТУ EN 50470-1 та ДСТУ EN 50470-3 при дотриманні споживачем умов експлуатації, зберігання, монтажу, встановлення цієї настанови з експлуатації.

6.2 Гарантійний термін експлуатації лічильників - 5 років з моменту їх продажу. У разі відсутності відмітки про дату продажу, гарантійний строк експлуатації визначається з дати випуску.

6.3 При поставці на експорт підприємство-виробник гарантує якість лічильників та їх відповідність вимогам настанови з експлуатації протягом 5 років з моменту слідування лічильників через Державний кордон України при дотриманні замовником умов експлуатації та збереження відповідно до дійсної настанови з експлуатації і при умові збереження пломбування підприємства-виробника.

6.4 У випадку виходу з ладу або невідповідності лічильників вимогам цієї настанови з експлуатації в період гарантійного строку експлуатації, лічильники мають бути відремонтовані організацією, уповноваженою проводити гарантійний ремонт або замінені підприємством-виробником.

6.5 При порушені контрольної пломби підприємства-виробника, при наявності механічних пошкоджень цоколя, кожуха, при наявності слідів інтенсивного нагріву на затисній пласті або при по рушенні правил експлуатації, укладених у даній настанові, лічильники знімаються з гарантії і ремонт проводиться за рахунок споживача.

6.6 Підприємство-виробник не несе відповідальності за лічильники, які відмовили при експлуатації через неправильне підключення.

6.7 Післягарантійний ремонт здійснюється організацією, уповноваженою проводити ремонт або підприємством-виробником за окремим договором.

6.8 Гарантійний термін зберігання - 1 рік з моменту відвантаження лічильників.
Додаток А
(обов'язковий)

Габаритні та установочні розміри лічильників

Рисунок А.1 – Габаритні та установчі розміри лічильників

AAUH.411152.025 HE
Схеми підключення лічильників

Рисунок 5.2 Схема підключення лічильника

Додаток В
(рекомендований)

Таблиця помилок лічильників

Таблиця В.1 – Коди помилок лічильників

<table>
<thead>
<tr>
<th>Код помилки</th>
<th>Значення</th>
<th>Дія</th>
</tr>
</thead>
<tbody>
<tr>
<td>Err 006</td>
<td>Збій годинника реального часу*</td>
<td>Перевірте чи не «сіла» літієва батарейка. Встановіть годинник через оптоголовку або один з інтерфейсів. Перевірте чи правильно запараметризована тарифна сітка</td>
</tr>
<tr>
<td>Err 040</td>
<td>Відкрита клемна кришка лічильника*</td>
<td>Встановіть клемну кришку лічильника, або міцніше затягніть пломбувальний гвинт клемної кришки</td>
</tr>
<tr>
<td>Err 044</td>
<td>Відкрита кришка кожуху лічильника*</td>
<td>Зверніться в енергопостачальну організацію та сервісний центр</td>
</tr>
<tr>
<td>Err 051</td>
<td>Помилка контрольної суми програми</td>
<td>Зверніться в енергопостачальну організацію та сервісний центр</td>
</tr>
<tr>
<td>Err 090</td>
<td>Нерівність струмів в колах фази і нейтралі</td>
<td>Перевірте схему підключення лічильника</td>
</tr>
<tr>
<td>Err 091</td>
<td>Реверс струму</td>
<td>Перевірте схему підключення лічильника</td>
</tr>
<tr>
<td>Err 205</td>
<td>Помилка мікросхеми пам’яті</td>
<td>Зверніться в енергопостачальну організацію та сервісний центр</td>
</tr>
<tr>
<td>Err 206</td>
<td>Помилка мікросхеми пам’яті</td>
<td>Зверніться в енергопостачальну організацію та сервісний центр</td>
</tr>
<tr>
<td>Err 230</td>
<td>Помилка вимірювань</td>
<td>Зверніться в енергопостачальну організацію та сервісний центр</td>
</tr>
<tr>
<td>Err 231</td>
<td>Помилка калібрування</td>
<td>Зверніться в енергопостачальну організацію та сервісний центр</td>
</tr>
<tr>
<td>Err 232</td>
<td>Помилка параметризації*</td>
<td>Перевірте чи правильно запаметризована тарифна сітка</td>
</tr>
<tr>
<td></td>
<td>Спрацювання датчика електромагнітного поля*</td>
<td>Зверніться в енергопостачальну організацію</td>
</tr>
<tr>
<td></td>
<td>Спрацювання датчика магнітного поля</td>
<td>Зверніться в енергопостачальну організацію</td>
</tr>
</tbody>
</table>

* помилка, що може виникнути лише в багатотарифних виконаннях лічильників
Додаток Г. Ідентифікаційні коди OBIS

Коди OBIS (Object Identification System IEC 62056-61) використовуються для ідентифікації показань енергії і максимальних інтервальних значень в протоколі передачі даних IEC 62056-21 лічильників електричної енергії NIK 2100 AP2…

Структура кодів OBIS, що використовується в NIK 2100 AP2… наступна:
C.D.E
de
С - ідентифікує фізичну величину, наприклад, тип потужності і її напрямок. 0 ідентифікує об'єкти загального призначення.
D - ідентифікує алгоритм обробки, наприклад, накопичення в часі, максимум і накопичений максимум.
E - тариф 1 ... 4, або 0 для сумарних величин.

В таблиці «Таблиця Г. 1 Коди OBIS» наведені коди OBIS, що використовуються для ідентифікації показань лічильників електричної енергії NIK 2100 AP2… в протоколі обміну даними.

<table>
<thead>
<tr>
<th>Код OBIS</th>
<th>Одиниця виміру</th>
<th>Дані</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9.1</td>
<td>Час (поточний)</td>
<td></td>
</tr>
<tr>
<td>0.9.2</td>
<td>Дата (поточна)</td>
<td></td>
</tr>
<tr>
<td>96.1.0</td>
<td>Серійний номер лічильника</td>
<td></td>
</tr>
<tr>
<td>96.1.1</td>
<td>Тип лічильника</td>
<td></td>
</tr>
<tr>
<td>96.1.10</td>
<td>Версія прошивки</td>
<td></td>
</tr>
<tr>
<td>96.1.11</td>
<td>Контрольна сума прошивки</td>
<td></td>
</tr>
<tr>
<td>96.1.12</td>
<td>Версія протоколу обміну даними з лічильником</td>
<td></td>
</tr>
<tr>
<td>1.7.0</td>
<td>кВт</td>
<td>Потужність активна, імпорт</td>
</tr>
<tr>
<td>2.7.0</td>
<td>кВт</td>
<td>Потужність активна, експорт</td>
</tr>
<tr>
<td>12.7.0</td>
<td>В</td>
<td>Напруга</td>
</tr>
<tr>
<td>15.7.0</td>
<td>кВт</td>
<td>Потужність активна, абсолютне значення</td>
</tr>
<tr>
<td>16.7.0</td>
<td>кВт</td>
<td>Потужність активна, абсолютне значення</td>
</tr>
<tr>
<td>1.8.0</td>
<td>кВт</td>
<td>Енергія активна, імпорт</td>
</tr>
</tbody>
</table>

2 Для лічильників з вимірюванням енергії в одному напрямку значення поточної активної потужності експорту завжди дорівнює нулю.
3 Для лічильників з вимірюванням енергії в одному напрямку значення потужностей |A+|+|A-| та |A+|-|A-| співпадають зі значенням поточної активної потужності імпорту.

ААШХ.411152.025 НЕ
<table>
<thead>
<tr>
<th>Дата</th>
<th>Енергія активна, експорт ⁴</th>
<th>Енергія активна, абсолютне значення</th>
<th>Енергія активна, абсолютне значення</th>
<th>Енергія активна імпорт, тариф 1 ⁷</th>
<th>Енергія активна імпорт, тариф 2 ⁷</th>
<th>Енергія активна імпорт, тариф 3 ⁷</th>
<th>Енергія активна імпорт, тариф 4 ⁷</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8.0</td>
<td>кВтг</td>
<td>Енергія активна, експорт ⁴</td>
<td>Енергія активна, абсолютне значення</td>
<td>Енергія активна імпорт, тариф 1 ⁷</td>
<td>Енергія активна імпорт, тариф 2 ⁷</td>
<td>Енергія активна імпорт, тариф 3 ⁷</td>
<td>Енергія активна імпорт, тариф 4 ⁷</td>
</tr>
<tr>
<td>15.8.0</td>
<td>кВтг</td>
<td>Енергія активна, абсолютне значення</td>
<td>Енергія активна, абсолютне значення</td>
<td>Енергія активна імпорт, тариф 1 ⁷</td>
<td>Енергія активна імпорт, тариф 2 ⁷</td>
<td>Енергія активна імпорт, тариф 3 ⁷</td>
<td>Енергія активна імпорт, тариф 4 ⁷</td>
</tr>
<tr>
<td>16.8.0</td>
<td>кВтг</td>
<td>Енергія активна, абсолютне значення</td>
<td>Енергія активна, абсолютне значення</td>
<td>Енергія активна імпорт, тариф 1 ⁷</td>
<td>Енергія активна імпорт, тариф 2 ⁷</td>
<td>Енергія активна імпорт, тариф 3 ⁷</td>
<td>Енергія активна імпорт, тариф 4 ⁷</td>
</tr>
<tr>
<td>1.8.1</td>
<td>кВтг</td>
<td>Енергія активна імпорт, тариф 1 ⁷</td>
<td>Енергія активна імпорт, тариф 2 ⁷</td>
<td>Енергія активна імпорт, тариф 3 ⁷</td>
<td>Енергія активна імпорт, тариф 4 ⁷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.2</td>
<td>кВтг</td>
<td>Енергія активна імпорт, тариф 2 ⁷</td>
<td>Енергія активна імпорт, тариф 3 ⁷</td>
<td>Енергія активна імпорт, тариф 4 ⁷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.3</td>
<td>кВтг</td>
<td>Енергія активна імпорт, тариф 3 ⁷</td>
<td>Енергія активна імпорт, тариф 4 ⁷</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.4</td>
<td>кВтг</td>
<td>Енергія активна імпорт, тариф 4 ⁷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁴ Для лічильників з вимірюванням енергії в одному напрямку значення активної експортованої енергії завжди дотримується нулю.

⁵ Для лічильників з вимірюванням енергії в одному напрямку значення енергії |A+|+|A-| співпадають зі значеннями активної імпортованої енергії.

⁶ Для лічильників з вимірюванням енергії в одному напрямку значення експортованої енергії за кожним із тарифів завжди дотримується нулю.

⁷ Для лічильників з вимірюванням енергії в одному напрямку значення енергії |A+|+|A-| та |A+|+|A-| співпадають зі значеннями енергії активної імпортованої за відповідним тарифом.
<table>
<thead>
<tr>
<th>Номер зміни</th>
<th>Номера сторінок</th>
<th>Всього сторінок після внесення змін</th>
<th>Інформація про надходження зміни (номер супровідного листа)</th>
<th>Підпис особи, яка внесла зміни та дата внесення</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>змінених</td>
<td>знову введеннях</td>
<td>анульованих</td>
<td>замінених</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ААШХ.411152.025 НЕ